# Tetrahedron # Tetrahedron bounding box size: # Figure 1: Side View # # *_ - # / \ ^ # / | \_ # / | \ depth # / | \_ v # *----0-------* - # # Figure 2: Top View # # *_B # | \_ # |\ \_ # | \ \_ # | \ \_ # | \A \__ # | *--__*D # | / _/ # | / _/ # | / _/ # |/ _/ # |_/ # *C # From these diagrams, you can tell that the width is the height of an # equilateral triangle. If we assume the edge of the tetrahedron is s, then: define @ns s - 4 define @half_height s / 2 # For the depth, a few calculations are necessary: # # a + b = s * sin(⅓π) # a² + (s/2)² = b² define @a (s/2)*tan(⅙π) define @na (@ns/2)*tan(⅙π) define @b s * (sin(⅓π) - tan(⅙π)/2) # a² + d² = (s*sin(⅓π))² define @depth s * sqrt((sin(⅓π))^2 - ((1/2)*tan(⅙π))^2) define @ndepth @ns * sqrt((sin(⅓π))^2 - ((1/2)*tan(⅙π))^2) # Considering that the origin is in the center of the base, the min x is -a, # the min y is -s/2, and the min z is 0 -@a < x < @b -@half_height < y < @half_height 0 < z < @depth {{ρ ≤ @a * sec(φ - ⅓π) * (1 - z/@depth) ∧ φ ≥ 0 ∧ φ ≤ 2 * ⅓π} ∨ \ {ρ ≤ @a * sec(φ - π) * (1 - z/@depth) ∧ {φ ≥ 2 * ⅓π ∨ φ ≤ -2 * ⅓π}} ∨ \ {ρ ≤ @a * sec(φ + ⅓π) * (1 - z/@depth) ∧ φ ≤ 0 ∧ φ ≥ -2 * ⅓π} ∨ ρ = 0} \ ⊻ \ {z ≥ 1 ∧ z ≤ @ndepth ∧ \ {{ρ ≤ @na * sec(φ - ⅓π) * (1 - z/@ndepth) ∧ φ ≥ 0 ∧ φ ≤ 2 * ⅓π} ∨ \ {ρ ≤ @na * sec(φ - π) * (1 - z/@ndepth) ∧ {φ ≥ 2 * ⅓π ∨ φ ≤ -2 * ⅓π}} ∨ \ {ρ ≤ @na * sec(φ + ⅓π) * (1 - z/@ndepth) ∧ φ ≤ 0 ∧ φ ≥ -2 * ⅓π} ∨ ρ = 0}}